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1. Modelling and simulation of wind fields 

The wind velocity fields simulated by NOWS are modelled as a stationary, Gaussian random 
processes depending on time t and of the position x = [x, y, z]T in a finite spatial domain D. The 
orthogonal reference system (x, y, z) has origin on the ground and the axis z is vertical and directed 
upwards. 
The wind velocity is idealized as the sum of two terms: (1) the mean wind velocity U(x), function 
of the position x, and oriented in the whole domain along the positive direction of the axis x; (2) the 
zero-mean random function u(x, t), function of space and time, whose Cartesian components u, v, w 
along x, y, and z, respectively, represent the longitudinal, lateral and vertical atmospheric turbulence 
components. 
NOWS can produce realizations of the wind velocity field in any user-defined discrete set of points 
in D, which id referred to as simulation domain. 

2. Models for mean wind velocity 

The mean wind velocity is aligned along the x-axis in the whole simulation domain. Its amplitude in 
the simulation points can be assigned through three alternative options: 
1. the mean wind velocity depends on z according to the logarithmic profile: 
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where  is the Von Kármán constant (it is assumed  = 0.4), z0 is the roughness length and u* 
is the friction velocity. The profile defined by Eq. (1) is usually accepted for z < 200 m and is 
assumed constant for z < zmin; the friction velocity u* is a scale parameter, while z0 determines 
the shape of the profile according to the superficial characteristics of the terrain. Typical 
values for z0 and zmin can be found in Table 1 [1]. 

2. The mean wind velocity follows the logarithmic profile [1]: 
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where vb is referred to as basic wind velocity and represents the wind velocity at the reference 
height (z = 10 m) on the reference terrain (category II, Tab. 1) with an assigned return period 
[1]; kr is referred to as terrain factor and is defined as a function of z0 through the relationship: 
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where z0,II = 0.05 m is the roughness length pertinent to the reference terrain (Tab. 1).  
3. The mean wind velocity is assigned in each simulation point through an input vector. 
 



Table 1. Terrain categories defined in [1]. 
 
Terrain category z0 (m) zmin (m) 
0 Sea or coastal area exposed to the open sea 0.003 1 
I Lakes or flat and horizontal area with negligible vegetation and 

without obstacles 
0.01 1 

II Area with low vegetation such as grass and isolated obstacles (trees, 
buildings) with separations of at least 20 obstacle heights 

0.05 2 

III Area with regular cover of vegetation or buildings or with isolated 
obstacles with separations of maximum 20 obstacle heights (such as 
villages, suburban terrain, permanent forest) 

0.3 5 

IV Area in which at least 15 % of the surface is covered with buildings 
and their average height exceeds 15 m 

1.0 10 

 

3. Models for turbulence 

The fluctuating component of the wind velocity is modelled as a Gaussian, zero-mean, stationary 
random process. The three components of turbulence are considered as statistically-independent and 
are simulated independently of each other. 
The Power Spectral Density (PSD) function of the turbulence component  = u, v, w in the point x 
of D is defined as [2]: 
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where n is the frequency, d is a constant defined as du = 6.868 and dv = dw = 9.434; L and  are, 
respectively, the integral length scale and the standard deviation of turbulence component  = u, v, 
w. These quantities can be assigned in each simulation point through an input vector or can be 
defined through the models [1, 2]: 
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where u = 1.00, v = 0.25, w = 0.10 and  
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 00.67 0.05ln z    (7) 

In Eqs. (5), (6) and (7) the dimensional quantities L, z and z0 are expressed in metres. 
The two-point PSD of the turbulence component  in the points x and x of D is expressed as: 
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where Coh is the two-point coherence function of the turbulence component  defined as [3]: 
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where Cx, Cy and Cz are the exponential decay coefficients for the turbulence component  and 
separation distance along the direction x, y, and z, respectively. The value for these parameters is 
assumed as [2]: 
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4. Simulation algorithm 

The simulation of the turbulence field is carried out by the spectral-representation algorithm 
described in [4]. The procedure is organized as follows: 
1. The PSD matrix S of the turbulence component  selected for the simulation is obtained 

evaluating Eqs. (8) for every pair of simulation points xj and xk (j,k = 1,…,N) in the simulation 
domain  

      , , , 1, ,j kjk
n S n j k  S x x  N  (11) 

2. The frequency n is discretised according to a linear or logarithmic scale.  
The linear scale is defined as: 

  1, ,hn h n h N    n  (12) 

in which Nn is given by the relationship 

   ceil 1 2n tN N   (13) 

where ceil() returns the integer number immediately greater than the argument and Nt is the 
number of time steps required in the simulation. 
The logarithmic scale is defined as: 
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 in which t is the simulation time step and Nn is user-defined. 
3. The PSD matrix is factorized in terms of eigenvalues and eigenvectors for each frequency 

value defined by Eq. (12) or (14). 
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where  and  are, respectively the matrices containing the eigenvalues and eigenvector of S. Since 
the factorization defined by Eq. (15) must be repeated Nn times, for large Nt and N, it is convenient 
to adopt the logarithmic discretisation scheme defined by Eq. (14) for which Nn is user-defined. 
When the logarithmic frequency discretisation is selected NOWS adopts Nn = 50. 
4. Realizations of the turbulence field are generated by an FFT algorithm [4]. If the factorization 

of the matrix S is carried out according to the logarithmic frequency scale, values of   and  
to be employed in the FFT are interpolated according to the schemes described in [4]. 
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